久久99久久人婷婷精品综合,欧美一区自拍,久久国产主播,成人福利影视

技術(shù)文章

Technical articles

當(dāng)前位置:首頁技術(shù)文章In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-Performance

In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-Performance

更新時間:2021-06-01點擊次數(shù):2991

In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-

        Performance Bifunctional Sensing Applications Tiantian Dai, Zanhong Deng, Xiaodong Fang,* Huadong Lu, Yong He, Junqing Chang, Shimao Wang, Nengwei Zhu, Liang Li,* and Gang Meng*

1. Introduction

       Device fabrication/integration is a longstanding challenge issue for the practical application of metal oxide nanowires with distinctive physiochemical and unique quasi-1D geometric properties.[1–3] In comparison with conventional planar nanowire devices, in which postsynthesis alignment (Langmuir–Blodgett technique,[4] contact printing,[5] and blow bubble,[6] etc.) is first employed and then electrodes are deposited, by directly growing nanowires on the selected area of solid substrates with bottom electrodes, when the tips of nanowires growing on the counter electrodes encompass each other and form stable junctions, a “bridged” nanowire device could be formed (at a large scale) in an in situ manner.[7–10] Apart from the superior benefits of facile integration of nanowire devices, bridged nanowire devices outperform conventional planar nanowire devices in several aspects. First, in situ growth ensures good electrical contact between the nanowires and the underlying electrode,[11] which plays an essential role in the performance of diverse microelectronic devices, including sensors,[12] photodetectors,[13] field emitters,[14] and energy storage devices.[15] Second, a nonplanar (or suspended) configuration not only avoids carrier scattering at the nanowire/substrate interface (leading to increased mobility)[16] but also offers a maximal exposure surface for analyte molecule adsorption (acting as a gate-all-around effect) and thus offers an additional avenue for designing highly sensitive sensors with ultralow power consumption.[7,11,17,18] As an important p-type oxide with versatile properties, CuO nanowires have promising applications in molecular sensors for harmful vapor monitoring,[19–23] photodetectors,[24] field emitting devices,[25] energy storage devices,[26] etc. Previous studies indicate that the number and density of bridged nanowires play an important role in the device performance (i.e., response and power consumption of gas sensors),[7,27] therefore, a rational synthesis methodology is essential for constructing high-performance devices. Though thermal oxidation of Cu (powder, foil, wire, film, etc.) offers a simple and catalyst-free method[28,29] for anisotropic growth of CuO nanowires, driven by oxidation induced strain between the CuO/Cu2O interfaces, as well as the fast outer diffusivity of Cu ions across the CuO/ Cu2O/Cu interfaces[29,30] and thermal oxidation of Cu powder or sputtered (patterned) Cu film dispersed/deposited onto the electrode substrate enabling the formation of bridged nanowires,[8,19] weak adhesion (due to thermal oxidation induced strain),[31] poor uniformity and uncontrolled electrical pathways hinder their promising applications. In this work, a novel methodology based on dewetting of patterned Cu films to create ordered Cu microhemisphere arrays was reported. Ag layer was proposed as a sacrificial layer to assist the dewetting of Ag/Cu/Ag films into microhemispheres at a relatively low temperature of 850 °C. Sacrificial Ag could be readily removed by vacuum evaporation due to the higher vapor pressure of Ag than Cu. In comparison with previously reported Cu powder or Cu film devices, Ag-assisted dewetting significantly shrinks the contact area of Cu/substrate to ≈1–500 µm2 (depending on size), which allows effective release of the interfacial stress during thermal oxidation of Cu[31] and contributes to firm adhesion with the underlying substrate. In addition, the position and size of hemisphere Cu arrays could be readily controlled, which plays a vital role in manipulating the structural properties (diameter, length and bridging density of nanowires) of CuO nanowires grown by thermal oxidation on diverse insulator substrates with indium tin oxide (ITO) electrodes. The in situ formed regularly bridged CuO microhemisphere nanowire arrays (RB-MNAs) devices exhibit much higher gas molecule and light responses than irregularly bridged microsphere nanowires (IB-MNs) devices, fabricated by thermal oxidation of Cu powder dispersed on ITO electrode substrates. For example, the electrical response (toward 100 ppm trimethylamine, TMA) of the RB-MNAs device is 2.8 times as high as that of the IB-MNs device at an operation temperature of 310  °C. The on/off current ratio toward (15.6  mW cm−2 ) 810  nm of the RB-MNAs device is 1.5 times as high as that of the IB-MNs device. Finally, 4 × 4 RB-MNAs devices were integrated onto a transparent ITO/quartz wafer, demonstrating the potential of the present methodology for the mass production of bridged CuO nanowire devices for future applications.

 2. Results and Discussion

        Although dewetting of uniform patterned metal films offers an approach to obtain homogeneous metal micro/nanoparticle arrays,[32,33] dewetting of patterned Cu films (prepared by using Ni shadow masks, the geometric parameters are listed in Table S1, Supporting Information) fails even at a high temperature of 850  °C. The high melting point of Cu (1085  °C) probably hinders the shrinking of the patterned Cu film at 850  °C (Figure S1, Supporting Information). Binary Cu-metal phase diagrams indicate that CuAg alloy (with 71.9 wt% Ag) possesses a low melting temperature of 779 °C,[34] which suggests that alloying with Ag may facilitate the dewetting of Cu film. Moreover, as the vapor pressure of Ag is much higher than that of Cu, Ag may be removed by appropriate thermal evaporation. Inspired by the abovementioned analysis, the patterned Cu film was sandwiched between the top and bottom Ag sacrificial layers (Ag/Cu/Ag) on a SiO2/Si or quartz substrate coated by ITO interdigital electrode (Figure 1a,e). As expected, the Ag/Cu/Ag film (size of 10.5  µm, thickness of 1.2/1.2/1.2  µm, with a Ag weight ratio of ≈70%) could be dewetted into a hemisphere shape (inset of Figure 1f) via vacuum or inert gas atmosphere annealing in a tube furnace (to prevent oxidation of metals) at 850 °C (Figure 1b,f). A noticeable decrease in the diameter of hemispheres from 8.0 ± 0.3 µm (Figure S2a, Supporting Information) to 7.0  ± 0.3 µm (Figure S2b, Supporting Information) was observed after performing vacuum evaporation (850 °C, 0.1 Pa, 1 h) (Figure 1c,g and Figure S2, Supporting Information). Moreover, the appearance of a dark condensed metal film in the low-temperature zone of the quartz tube furnace infers the evaporation of Ag, because the vapor pressure of Ag (≈2.8 × 10−1  Pa) is much higher than that of Cu (≈2.3 × 10−3  Pa) at 850  °C.[35] Thermal oxidation of ordered Cu microhemispheres at 400–450  °C allows the formation of ordered hierarchical CuO microhemisphere nanowires (Figure  1d,h). Specifically, when the nanowires grown from adjacent Cu spheres contact each other, a bridged nanowire device could be formed in an “in situ” manner. To monitor the variation of sacrificial Ag, energy dispersive spectrometry (EDS) analysis was performed (Figure 1i–l). Pristine Ag/Cu/Ag shows a higher Ag ratio (78.5  wt%) than the nominal ratio (70.3 wt%), as EDS is a surface analysis method that can only collect the generated X-ray signal in a region of ≈2 µm in depth depending on the atomic number,[36] which is less than the thickness of the Ag/ Cu/Ag film (≈3.6  µm) in Figure  1e. The substantial decrease in the Ag component in the CuAg alloy from 62.7  wt% (Figure  1j) to a negligible 0.2 wt% (Figure  1k) via vacuum evaporation suggests that most of the sacrificial Ag was evaporated. Appearance of O signal in the dewetted CuAg and Cu hemispheres (Figure  1j,k) may arise from trace oxidization by remaining oxygen in the vacuum (≈0.1 Pa) tube furnace during dewetting and evaporation process. Moreover, the tiny variation in Cu volume from the initial Cu film (Figure 1e) to the hemisphere (Figure  1g) infers that Cu was maintained during the dewetting and evaporation process. The use of a Ag sacrificiallayer allows the fabrication of ordered Cu microhemisphere arrays (Figure  1c,g) on a solid substrate and further obtains ordered hierarchical CuO microhemisphere nanowire arrays (Figure 1d,h).

 

 

 

 

 

 

 

 

以上論文信息不完整    感謝中科大的孟老師對微型探針臺的反饋!需要詳細(xì)的文獻,請到中科院一區(qū)  影響因子12    感謝所有的科研奉獻者辛勞的付出。

久久99久久人婷婷精品综合,欧美一区自拍,久久国产主播,成人福利影视
欧美日韩亚洲高清一区二区| 亚洲品质自拍视频| 青椒成人免费视频| 国产精品欧美一级免费| 欧美日韩一本到| 国产suv精品一区二区三区| 日韩精品一二区| 亚洲第四色夜色| 国产精品白丝在线| 国产夜色精品一区二区av| 91麻豆精品国产91久久久资源速度 | 99久久伊人网影院| 激情综合色播五月| 水野朝阳av一区二区三区| 亚洲美女视频在线| 国产精品久久午夜| 国产女人aaa级久久久级| 久久久久久久久97黄色工厂| 欧美成人bangbros| 日韩手机在线导航| 6080国产精品一区二区| 欧美最猛黑人xxxxx猛交| 91免费视频网址| 成人av在线一区二区三区| 国产不卡免费视频| www.成人网.com| 床上的激情91.| 91在线丨porny丨国产| 97精品国产露脸对白| 色一区在线观看| 欧美日韩在线播| 日韩一区二区三区av| 精品剧情v国产在线观看在线| 精品精品欲导航| 26uuu亚洲综合色| 欧美激情一区二区三区在线| 国产精品视频免费看| 《视频一区视频二区| 亚洲色图制服诱惑 | 久久精品国产精品亚洲红杏| 久久国产免费看| 国产精品一二三区在线| 成人黄色大片在线观看| 欧美专区日韩专区| 欧美精品在线视频| 日韩欧美成人午夜| 欧美激情一区二区三区在线| 亚洲美女视频在线| 美女视频黄免费的久久| 成人av手机在线观看| 欧美日韩国产天堂| 久久婷婷成人综合色| 国产精品免费视频网站| 一区二区三区在线不卡| 首页国产丝袜综合| 成人性生交大片| 欧美精品免费视频| 国产日韩三级在线| 五月婷婷激情综合| 国产成人av电影在线观看| 欧洲精品一区二区三区在线观看| 日韩欧美国产综合| 一区二区在线观看免费 | 美女诱惑一区二区| 94-欧美-setu| 亚洲精品在线网站| 一区二区三区在线高清| 国产成人av一区| 欧美精品久久天天躁| 中文字幕在线观看一区二区| 麻豆精品视频在线观看视频| 一本色道亚洲精品aⅴ| 精品美女被调教视频大全网站| 亚洲男人都懂的| 国产精品中文字幕欧美| 欧美日韩你懂的| 国产精品二三区| 久久精品国产色蜜蜜麻豆| 在线欧美日韩国产| 中文字幕日本乱码精品影院| 久久精品国产**网站演员| 欧美性大战久久| 亚洲精品乱码久久久久久黑人| 国产黑丝在线一区二区三区| 欧美一区二区三区在线观看| 亚洲综合精品久久| 91性感美女视频| 国产精品久久福利| 国产不卡视频在线观看| 精品粉嫩aⅴ一区二区三区四区| 亚洲国产中文字幕在线视频综合| 成人动漫av在线| 欧美国产激情二区三区| 激情六月婷婷久久| 日韩免费视频一区二区| 欧美aaaaa成人免费观看视频| 欧美老肥妇做.爰bbww视频| 一区二区三区不卡在线观看| 99久久婷婷国产综合精品电影| 国产欧美一区视频| 成人污视频在线观看| 国产精品久久久久久久久免费桃花| 国产成人日日夜夜| 欧美国产日产图区| 成人app下载| 亚洲六月丁香色婷婷综合久久| 99精品热视频| 一区二区在线免费| 欧美精品 国产精品| 日本成人在线不卡视频| 欧美大片一区二区| 国产精品99久久久久久似苏梦涵| 久久久久久久性| 成人av网站在线观看免费| 国产精品国产三级国产aⅴ无密码| 国产福利精品一区二区| 国产精品不卡在线观看| 欧美综合久久久| 青青草一区二区三区| 欧美电影免费提供在线观看| 国产一区二区三区综合| 国产精品毛片久久久久久久| 91在线观看免费视频| 亚洲成va人在线观看| 日韩免费视频一区| 国产**成人网毛片九色| 亚洲精选视频在线| 日韩欧美高清一区| 成人精品视频一区| 偷窥少妇高潮呻吟av久久免费| 日韩欧美三级在线| 国产精品一区二区视频| 亚洲婷婷综合久久一本伊一区| 欧美亚洲图片小说| 狠狠色丁香婷综合久久| 亚洲男女毛片无遮挡| 欧美一三区三区四区免费在线看 | 91精品一区二区三区在线观看| 精品一区二区国语对白| 亚洲三级久久久| 日韩一区二区三区四区| 99vv1com这只有精品| 蜜臂av日日欢夜夜爽一区| 国产精品毛片a∨一区二区三区| 欧美日韩激情在线| 成人a免费在线看| 麻豆成人av在线| 亚洲男人的天堂在线aⅴ视频| 91精品国产欧美日韩| 99在线精品一区二区三区| 日韩福利视频导航| 亚洲美女免费在线| 中文字幕欧美日本乱码一线二线| 欧美电影一区二区三区| 91小视频免费观看| 国产成人午夜电影网| 午夜av一区二区| 日韩一区在线免费观看| 久久综合99re88久久爱| 制服丝袜国产精品| 欧美三级中文字| 色香蕉久久蜜桃| 成人久久久精品乱码一区二区三区| 日本va欧美va欧美va精品| 亚洲五月六月丁香激情| 亚洲视频精选在线| 最新中文字幕一区二区三区| 久久久久高清精品| 日韩欧美中文一区| 欧美群妇大交群的观看方式| 一本色道久久综合亚洲91| 福利视频网站一区二区三区| 久久成人久久爱| 日本中文在线一区| 爽好久久久欧美精品| 亚洲va天堂va国产va久| 亚洲一级片在线观看| 亚洲免费观看高清完整版在线观看熊| 国产夜色精品一区二区av| 精品国产一区二区三区久久久蜜月| 欧美日韩黄视频| 欧美色爱综合网| 欧美日韩在线播放三区四区| 一本久久综合亚洲鲁鲁五月天| 成人黄色大片在线观看| www.亚洲免费av| hitomi一区二区三区精品| 成人久久久精品乱码一区二区三区| 懂色av一区二区三区免费看| 国产成人h网站| 国产aⅴ综合色| 成人av免费在线播放| caoporen国产精品视频| 色诱视频网站一区| 欧美色欧美亚洲另类二区| 欧美精品少妇一区二区三区| 日韩一区二区三区电影| 久久精子c满五个校花| 国产精品不卡在线观看| 亚洲一卡二卡三卡四卡五卡|